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A numerical model of steady-state, two-dimensional free convection within an inter- 
nally heated fluid of variable viscosity has been developed primarily for application 
to the earth’s upper mantle. The dimensionless free-convection energy and stream 
function equations include advection, the adiabatic gradient, viscous dissipation, 
radiogenic heat sources, boundary heat fluxes, variable diffusivity, and variable viscosity. 
Both the energy equation and the fourth-order stream function equation are solved 
numerically by alternating direction implicit (ADI) algorithms on a special nonuniform 
grid first suggested by Samarskii. 

The Reynolds number is negligibly small, the Rayleigh number exceeds 106, and the 
Rrandtl number exceeds loss. The numerical convergence, accuracy and reliability of 
the method are established by various numerical tests. 

1. INTRODUCTION 

Ever since the pioneering experiments of Btnard [I] most studies of free 
convection have assumed that the convection is driven by a constant temperature 
differential between horizontal upper and lower boundaries; the viscosity has 
generally been taken as constant. Convection in the earth’s mantle differs from 
these assumptions in several important respects: 

(1) Only the upper boundary temperature is known, and much of the heat is 
generally believed to be due to distributed radiactive sources. This case 
has been little studied [2-51 and the results of the various investigations 
do not agree. 

(2) The viscosity varies with temperature and depth. The marginal stability 
case for a fluid with depth-dependent viscosity has been studied in some 
cases [6-g], but the case of temperature- and depth-dependent viscosity 
appears analytically insoluble. 
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(3) Finally, both the Prandl number and the Rayleigh number are extremely 
large (greater than 10z3 and 106, respectively) while the Reynolds number 
is negligibly small; there are no experimental data on such phenomena. 

Because of the preceding considerations we decided to make a numerical study 
of free convection under the following assumptions: 

(a) rectangular two-dimensional enclosure with horizontal top and bottom, 
(b) fluid with variable Newtonian viscosity, 
(c) uniformly distributed heat sources, 
(d) specified heat flow through the bottom, 
(e) inclusion of viscous dissipation and adiabatic gradient. 

The results and their geological implications are discussed in a companion 
paper [lo]; the present paper deals with the mathematical methods. 

2. FREE CONVECTION EQUATIONS 

The Hydrodynamic Equations 

We will assume the Boussinesq approximation, a Newtonian but variable 
viscosity and negligible momentum advection (“slow flow” conditions). With 
these assumptions the equations for mass, momentum, and energy conservation 
are, respectively, 

aUa-0 
ax,- 9 (2.1) 

au, -= 
at -kg + h,gSTuz + & [v (2 + 2)] 9 (2.2) 

4 (CT) + u, -& (CT) - 24 & @gT) = & (5 $) + H + E. (2.3) 
* 2 4 

Several methods have been devised to solve the above set of equations. The 
first one is to use directly the “primitive” variables (u, u, p). The MAC method [I I] 
is the premier example of this type of solution. 

Most authors [12-141 have utilized the vorticity-stream function approach. 
In this second method the pressure is eliminated by cross-differentiating the 
momentum equations. This yields two Poisson equations: one for the vorticity 
transport and one for the stream function. If the viscosity is constant these 
equations are separable. 

We use a third method, which appears more suitable for variable viscosity 
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problems [ 151. In this approach the pressure is eliminated by cross-differentiating 
the momentum equations, and the stream function derivatives are substituted 
for the velocities. This results in a fourth-order equation in the stream function ?8’, 
the so-called “generalized biharmonic equation.” 

In addition we reduce the equations to dimensionless form by application of 
appropriate scaling quantities. In particular, 

xs = ~,I%, 3 u, = ti,/ti, ) e = T/PO, k = I&, 

t = 2/i, , P = PIP0 3 (2.4) 

where “hatted” variables indicate dimensional quantities. It is convenient to use 
the diffusivity Kg , and the vertical scaling length x,,, , to form a scaling velocity 
and time, i.e., 

2.40 = “o/% 3 t, = X$/K,, . 

The scaling factor for the stream function is yO = K~ . 

(2.5) 

The Dimensionless Equations 

Using the previous assumptions and defining the velocities as u = W/ay 
and v = -W/ax, we can write the energy equation (2.3) as 

=(~)2$-(k~)+;(k~)+~H+&p[(~~)2 

+ ; ($$)” + ; gg2 + (8)’ + ($!$g$] * G-9 

The momentum equation (2.2) similarly becomes 

+ (%) & [4/~ (2) s] = 5 (2) $. (2.7) 

Boundary Conditions 

The two-dimensional energy and stream function equations are solved within 
a rectangular enclosure, 
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Thermal boundary conditions. The sides of the enclosure are reflection surfaces 
with zero horizontal derivative of the temperature. The top is held at 0°C. The 
heat flux through the bottom is specified. 

Velocity boundary conditions. The sides are reflection surfaces with the 
horizontal derivative of the vertical velocity equal to zero, i.e., a surface of “free 
slip.” The horizontal velocity is zero on the sides. The top surface is also a surface 
of free slip with no vertical displacement allowed. At the top surface the vertical 
derivative of horizontal velocity is zero, and the vertical velocity is also zero. 
The bottom boundary is a surface of “no slip,” that is, all velocities are zero along 
the bottom. 

Stream function boundary conditions. The boundary conditions on the stream 
function are easily obtained from the previous boundary conditions on the 
velocities: 

at the bottom aY/ax = aY/ay = 0, (2.8) 

at the top alvjax = ayay2 = 0, (2.9) 

at the sides aY/ay = a?qax2 = 0. (2.10) 

In addition, in order for ?P to be unique in the enclosure we must specify its 
value on the boundary; we choose 

Y = 0. (2.11) 

3. NUMERICAL SOLUTION OF THE PARTIAL DIFFERENTIAL EQUATIONS 

The Variable Mesh System 

We choose the x-axis positive eastward. We choose the y-axis positive downward. 
The finite difference mesh has equal horizontal intervals; its vertical intervals 
are related by the equation 

hi = h,-,(l + h,-3. 

As first remarked by Samarskii [16, p. 1491 this insures second-order accuracy 
for finite difference approximations to first- and second-order derivatives. The 
method has recently be rediscovered [17]. Its advantage is that it yields a higher 
resolution near the top where higher gradients of temperature are expected to 
occur. 

The placement of the variables on the grid is similar to the one used in the 
MAC method [l I]; it is shown in Fig. 1. Note that our indexing of the variables 
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differs slightly from that of the MAC method, e.g. our Yi+l,j+l would be ?&+1/2,j+1/2 
in the MAC notation. This grid scheme is attractive for several reasons. First, 
the velocities are easily approximated to 0(dx2) by central differences in Y, 
and second, advection of heat can be approximated by heat energy advected 
by mass flux through the four sides of the control volume. Oi,i is then interpreted 
as the “average” temperature of the material volume centered at the position of ei,j . 

In order to simplify the computations, one extra node is added outside and 
beyond the original boundary. The sides, top and bottom of the enclosure are 
defined by the Y-nodes. Figure 2 illustrates the indexing conventions used, for 
the case M = 3, N = 2, which we call a 3 x 2 grid. 

FIG. 1. Map of the relative spatial positions of 0, Y, u and v 

\;. 
1, Y*‘ ’ “,. 

FIG. 2. Numbering convention for the Y grid. 

Solution of the Energy Equation 

The heat conduction equation can be solved by numerous methods [l&20] 
but the solution of the complete heat transfer equation with an advection term, 
is more difficult [21-231. In the present case, however, where we are seeking a 
steady-state solution, these difficulties are much less serious. Furthermore, in 

5Wr6/3-3 
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order to insure stability of the solution regardless of the time-step, we use upwind 
differencing of the temperatures. This may be written in conservative form for the 
x-direction as [24, 251 

We solve the energy equation by using the alternating direction implicit (ADI) 
method [26]. This method may be written as a two-pass procedure: A row pass, 
implicit in x and which yields the temperatures at time-step n + l/2, and a column 
pass, implicit in y which yields the temperatures at time-step n + 1, i.e., 

g3,(en+v + en) + s,en = w + (en+l/z - eydtn, (3. la) 

gsm(en+l/2 + en) + *s,(en+l + en) = w + (en+1 - enydtn, (3.lb) 

or on rearrangement, 

where 

(6, - (2pb)) en+112 = -(s, + 2~,~ + 2/h”) en - 2~n, (3.2a) 

(s, - (2/b)) en+1 = s,en - (2/dt9 en+1/2, (3.2b) 

s,e:,j = [qkv,) - UV,] e;,j , (3.3a) 

s,e:,j = [v,(kv,) - Vv,] oy,$ , (3.3b) 

and @” includes the terms of internal heat generation and viscous dissipation: 

internal heat generation at temperature node BiSj, 

viscous dissipation at temperature node f3i,i , 

q& = 2/L& [( aui+l12.j 2 
ax 1 ( + aui,i+l12 2 

aY ) ( 
+ ; auigy2.i 12 + ; ( avyil!, ~2 

+ ( %++/2*1 )( a%gu2 )] , 

where 

%+llP,j = *(%A + %+l,j)~ 

Vi.i+1/2 = HViA + Vi,~,d. 

The boundary conditions can be very simply written using the extra node 
outside the enclosure, and taking into account the variable vertical spacing. 
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Note that the boundaries do not pass through the 0 nodes (Fig. 2). At the upper 
boundary, for example, where the temperature &‘,, is specified, 

which yields et,. Other boundary conditions can be derived by similar procedures. 

Solution of the Momentum Equation 

The momentum equation (2.2) has been written as a generalized biharmonic 
equation (2.7). We solve it by an extension of the AD1 method of Conte and 
Dames [27, 281. These authors devised a method for solving the ordinary 
biharmonic equation in a square region with mixed boundary conditions. They 
proved convergence and provided a near optimum choice for the iteration 
parameters. Their two step iteration scheme can be written 

Y::l’z = Yzj - rn(V~Y~~‘2 + 2V,2V,2Ytj + V2Yzi - h4fi,), (3.5) 

y$?:+l= yJTfl’2 - rR(VZ4Y~~ - VZ4Y~j), (3.6) 

where r” is a positive iteration parameter chosen so as to speed convergence, 
and where Vg4 is the finite difference approximation to h* 8/@4 with similar 
definitions for VZ2VS2 and VZ4. 

We have adapted Conte and Dames’ scheme to variable viscosity by replacing 
the biharmonic form with constant coefficients by a variable viscosity version. 
In addition, at Dr. Rachford’s suggestion, the acceleration parameter was made 
inversely proportional to the average local viscosity. 

In our notation, V,* is the finite difference approximation to ?/+J, VZ2V,2 
to a4/ax2 ay2, etc. This difference from Conte and Dames accounts for the minor 
differences in the equations. In our case, rtj also contains a normalizing factor 
proportional to I-2h;‘h;?l . 

We thus obtain 

Yz:“” = !P:j - r~j[Vy2&~,jVyBY~~1’2) - VyS&T, jV,2!Pt j) 

- v2(P2,jv,2y~j) + 4v~*(~~jv~~~y~j~ + v,"(P;jv2y~j) -fj,j], (3.7) 

y?+ = y+/2 7.93 2.9 - r&[V,2(~;jV,2Y~:1) - V,2($jV,2Y~j)]. (3.8) 

In the equation above, fi.9 is the driving function for the stream function equation 
and is equal to the Rayleigh number, R, , times the horizontal derivative of 
temperature at the point Ytj (see Eq. (2.7)). 
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Application of the above algorithm involves the solution of a pentadiagonal 
matrix that is symmetric for constant viscosity and nearly symmetric for variable 
viscosity. 

The boundary conditions are, again, written very simply. At the top (j = 2), 
for example ~2Y/~y2 = 0 (see Eq. (2.10)), thus 

but Y& = 0 (see Eq. 2.11); hence we obtain 

Y;, = -h2Y;Jh,. (3.9) 

Other boundary conditions are easily derived. 

Steady-State Solutions 

To minimize the cost of machine computations and maximize the utility of the 
model, we have chosen to obtain steady-state solutions before attempting time- 
dependent ones. This enables us directly to compare steady-state solutions resulting 
from models with different parameters, e.g. convection driven entirely by boundary 
heat flux or entirely by internal heat sources. Such a comparison enhances our 
understanding of the roles of the various parameters. In order to accomplish 
this the energy equation is still solved as if it were time-dependent, but time is now 
treated not as an independent variable, but as an iteration parameter chosen to 
accelerate convergence [29]. A “global” iteration consists of a pass through both 
the temperature and stream function solutions, together with an update of the 
dependent variables (viscosity, conductivity). Furthermore, it was found best 
to restrict d t to some value proportional to 

m4,~l~~ IhfvI&x 2 I %AdY, IM&X Ihml- (3.10) 

This is equivalent to restricting the value of the smallest Courant number within 
the solution grid [20, p. 401. Particular values of At were selected by 
experimentation. 

Although there is some justification for viewing sequential iterations as a 
steady-state solution or similar to actual time-dependent solutions [30] we 
emphasize that here At, strictly speaking, is an “acceleration” parameter. We 
have limited experience with a true time-dependent solution. However, preliminary 
experiments indicated stable and reasonable solutions were computed using a d t 
ten times the value suggested in Eq. (3.10). 

Although the method so far described does not diverge, it oscillates around 
the steady-state solution: The variation of ‘u,,, is approximately f 10 %. These 
oscillations are probably due to phase distortion [31]. In order to avoid this 
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problem the driving function, A,j , is taken as the average of its values before and 
after each global iteration. With such averaging, the oscillations in the constant 
viscosity cases are less than 0.1 % and less than 1 % in all other cases. 

Fromm [32] has reported that no phase induced instabilities resulted if “new” 
temperatures were used in the buoyancy terms. However, in our case, we found 
that use of the “new” temperatures caused oscillation. Averaging the “new” 
and “old” temperatures in the buoyancy term for the stream function greatly 
reduced the amplitude of the oscillations. 

Convergence Criteria 

The iteration convergence of the energy equation is defined by a root mean 
square change (RMSC) 

where y1 denotes the sequence number of double iterations. The iterations are 
continued until RMSC < E (E = 10-5) or until 12 > N, where N is usually 50. 

The iteration convergence of the stream function equation is similar but 
E = 2 * 1O-6 and N = 160. Usually less than 50 double iterations bring the stream 
function equation to a “converged” status. As a further precaution the relative 
change between successive solutions is required to be less than 5 + 1O-3 at all 
computation nodes. 

Global convergence of the overall scheme is a judgment based on the constancy 
from iteration to iteration of 

(a) isotherm profiles, 
(b) stream function isopleths, 
(c) horizontally averaged vertical temperature derivatives, 
(d) surface heat flux, and 
(e) mean temperature. 

The computations are terminated when all the above quantities indicate an 
equilibrium condition in the enclosure. 

4. NUMERICAL CONVERGENCE TESTS 

It is necessary to carry out numerical convergence tests in order to establish 
the reliability of the results of the present method. Theoretical consideration of 
the stability and convergence of our finite difference scheme in the sense of Lax 
and Richtmyer [33] is difficult; hence the analytic consideration of stability was 
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bypassed in favor of a more pragmatic attempt to show convergence by numerical 
experimentation. 

One can distinguish between mathematical convergence of the finite difference 
equations to the partial differential equations, and numerical convergence of the 
finite difference method of solution. Here we are speaking of the latter. 

General methods for proving numerical convergence can be grouped into several 
categories; one may 

(a) test against a known solution; 
(b) attain the “same” solution starting from different initial conditions; 
(c) utilize symmetry; 
(d) use different mesh and “time” increments. 

All the above methods have been used to establish the convergence and accuracy 
of our method. Though a definitive proof of the numerical solution is lacking 
(i.e., direct comparison with a physical experiment), the accumulated “indirect” 
evidence for convergence, as detailed below, argues strongly for the reliability 
of the presented solutions. 

The Energy Equation 

It is well known that upwind differencing results in a stable explicit equation 
[18, pp. 397-399; 251. Roache [20] quotes Pearson [34] as having shown that the 
AD1 method is stable when central differences are used. However, the error 
eigenfunctions used by Pearson [34, p. A-321 are real only when the advection 
terms are smaller than the conduction terms; otherwise they are imaginary. 
This proof thus lacks generality. 

The difficulty of proving the convergence of AD1 methods, as well as the power 
of these methods, is well-recognized [35, 361. Even in the simpler case where the 
matrices H and V (corresponding, respectively, to a row and column pass) are 
symmetric but noncommutative, the proof is difficult [36], in the present case, 
where neither H nor V is symmetric, a rigorous proof of convergence has not been 
established. Instead the finite difference approximations of the individual terms in 
the energy equation were carefully monitored for their effects on a time-dependent 
temperature solution. Using symmetry, a variety of simple initial conditions, 
and both finer and coarser nets, confidence in the AD1 temperature solution was 
established. In addition, the close similarity between our solutions and those of 
McKenzie et al. [4, 51 reinforces this confidence. 

The Stream Function Equation 

Conte and Dames [27,28] have established the convergence of the AD1 method 
as applied to the biharmonic equation with constant coefficients; because of the 
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TABLE I 

Parameters of the Models 

CGS or other units 

Depth 

Width 

Density, pa 

Specific heat, C 

Thermal expansivity, fl 

Thermal conductivity, k, 

Kinematic viscosity, v,, 

Radiogenic heating,” H 

Heat flux through bottom 

7 . 10’ = 700 km 

1.96 . lo8 z 2000 km 
3.0. IO* = 3000 km 

3.5 g/cm3 

1.3 . 10’ erg/g “C 

3.7 . 10-5/T 

1.1 . 1O-2 Cal/cm “C set 

5 10zl cm2/sec 

1.9 . lo-’ erg/g set 

0.3 HFU 

SI units 

7 * 105 

I .96 . lo6 
3.0. 106 

3.5. 103 

1.3 . 103 

3.7. 10-S 

4.6 

5 . 101’ 

6.7 . lo+ W/m” 

1.25 . 1OV 

a Distributed over the depth of the cell, this corresponds to a surface heat flow of 
1.1 HFU = 4.6 . 10m2 SI units. 

variable viscosity in the present case, their analysis is not applicable. However, 
using our formulation we have reproduced the published results of Conte and 
Dames [28, p. 2711 for a clamped and a simply supported plate under a uniform 
load, by setting all viscosities (equivalent to “plate stiffness”) and mesh intervals 
constant. At the point of maximum deflection the two solutions agree to 
within 10-4. 

The accuracy of the variable mesh scheme vs constant mesh in the solution of 
the fourth-order stream function equation was evaluated by a series of tests 
with constant viscosity. The values of the parameters used in this and all subsequent 
tests are shown in Table 1. 

A temperature anomaly in the form of a 0 to n cosine wave was impressed upon 
a field of constant temperature within a 9 x 9, 15 x 15, and 20 x 20 grid. Using 
this temperature field as a driving function, the stream function equation was 
solved with both variable and constant vertical mesh intervals. As shown in Fig. 3, 
the differences among the solutions are small. 

Convergence Tests of the Numerical Convective Solution 

Though each of the AD1 solutions for the temperature and stream function 
may separately be convergent, we must still establish convergence for the combined 
system of equations. A first series of numerical experiments was run with constant 
viscosity, internal radioactive heating equivalent to 1.11 HFU, and bottom flux 
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STREAM FUNCTION 
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FIG. 3. Stream function profiles from ADI stream function convergence test with constant 
viscosity. 

of 0.3 HFU for variable grids of 9 x 9, 15 x 15, and 20 x 20. The aspect ratio 
of the cell was chosen so that two symmetric cells should develop within the 
enclosure [31]; the cell height is 700 km, the width is 2000 km. Figures 4-6 illustrate 
the final “converged” isotherms and isopleths for each of the three grids. These 
lines are drawn as linear interpolations between adjacent computation nodes. 

The similarity among all three solutions is apparent. As expected, the coarsest 
grid shows the greatest deviation. Moreover, all the solutions show a high degree 
of symmetry which argues for the accuracy of the solution. In addition, several 
solutions which were initiated with slightly different temperature anomalies 
converged to the same solution. 

A more detailed comparison shows that the average temperature on the 9 x 9, 
15 x 15 and 20 x 20 grids are, respectively, 551, 504 and 506°C; the largest 
temperature difference between the last two grids is less than 20°C. Similarly 
the stream function maxima are, respectively, 87, 81 and 79. Finally, the average 
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FIG. 4. Convergence test with constant viscosity on a 9 x 9 grid: bottom, normalized stream 
function; top, temperature in “C. 

FIG. 5. Convergence test with constant viscosity on a 15 x 15 grid: bottom, normalized 
stream function; top, temperature in “C. 

FIG. 6. Convergence test with constant viscosity on a 20 x 20 grid: bottom, normalized 
stream function; top, temperature in “C. 
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FIG. 7. Variation in 1 ‘I%,, and in the average temperature 
constant viscosity case vs the iteration number. 

of the cell for the 15 x 15 
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FIG. 8. Variable viscosity profile used in Fig. 9 and 10. The circles show the values used in the 
15 x 15 solution. 

heat flux at the surface are, respectively, 1.37, 1.35 and 1.33 HFU, which is within 
6 % of the theoretical value of 1.41 HFU. 

A final line of evidence is provided by Fig. 7 which shows the convergence of 
the stream function maximum and the average temperature of the cell towards 
their final values; the absence of oscillations is noteworthy. The average heat flow 
at the surface fluctuates even less. 
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FIG. 9. Convergence test with variable viscosity on a 9 x 9 grid: bottom, normalized stream 
function; top, temperature in “C. 

1 
FIG. 10. Convergence test with variable viscosity on a 15 x 15 grid: bottom, normalized 

stream function; top, temperature in “C. 

FIG. 11. Variation in 1 Y Imax and in the average temperature of the cell for the 15 x 15 
variable viscosity case vs the iteration number. 
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The above evidence strongly implies that the results obtained on a 15 x 15 grid 
are within a very few percent of the exact results. 

It is of some interest to note that, for symmetry to develop on a very coarse 
grid (e.g. 9 x 9), there should be an odd number of temperature grid points in the 
x-direction. This allows the midpoint to be a maximum and favors symmetry; 
if such condition is not fulfilled, departures from symmetry are to be expected. 
On the other hand, as the 20 x 20 net demonstrates, this condition is not important 
on a reasonably fine net. 

Experiments were also conducted with a viscosity depending only on depth; 
the viscosity profile used is shown in Fig. 8. All other parameters are as given in 
Table 1. Note that the viscosity varies by a factor of more than 100 over less 
than l/7 of the depth of the enclosure. The results of the computations using 9 x 9 
and 15 x 15 grids are shown in Figs. 9 and 10. The two solutions are quite similar 
in the general aspects of the circulation and the temperature fields. For the latter 
however, the 9 x 9 solution is about 200°C hotter than the 15 x 15 solution, 
while the stream function maxima differ by about 20 %. (They differed by 10 % in 
the constant viscosity case.) Considering that the high viscosity region near the 
surface is represented by a single point in the 9 x 9 solution, these differences 
are not surprising. 

It may be noted that the average heat flow at the surface in the 15 x 1.5 case 
is 1.40 HFU, and 1.36 in the 9 x 9 case (theoretical value 1.41 HFU), while the 
average temperatures are, respectively, 785” and 943°C. (This 20% difference 
corresponds to a 10 % difference in the constant viscosity case.) Finally, Fig. 11 
shows the convergence of the average temperature and of the stream function 
maximum toward their final values. While the variation is greater than in the 
constant viscosity case, still the average temperature fluctuates by less than 0.1 % 
and the stream function maximum by less than 1 “/o. 

CONCLUSIONS 

The numerical method presented solves the two-dimensional free convection 
equation for an internally heated fluid of variable viscosity. Both the second-order 
energy transport equation and the fourth-order stream function equation are 
solved by alternating direction implicit (ADI) methods. Though definitive proof 
of the numerical stability, convergence, and accuracy of the method is lacking, 
indirect evidence from systematic numerical tests strongly support the reliability 
of the model. 

With due heed to the two-dimensionality of the numerical solutions, as compared 
to the inherent three-dimensionality of most convection phenomena, numerical 
modeling appears to be a powerful tool with which to explore quantitatively the 
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nature of free convection within a material of high but variable viscosity, such as 
the earth’s upper mantle. 

Greek Letters 

Roman Letters 

c 
c 
g 
H 
hj 
i 
j 
k 
1 
P 
4 
r$tj 
s 

ZIP 
T 
u 
V 

X 

xos 

Y 

NOTATION 

Definition 

thermal expansivity 
constant determining size of At” 
substitution tensor 
dimensionless temperature 
coefficient of thermal diffusivity 
viscosity or dimensionless viscosity 
kinematic viscosity 
density 
viscous dissipation function 
viscous dissipation and volumetric heat sources 
stream function, usually dimensionless 

De@nition 

Courant number, c = Ax/At 
specific heat 
acceleration of gravity 
radiogenic heating 
jth vertical increment in F-mesh 
index in x-direction 
index in y-direction 
thermal conductivity 
horizontal space increment in the Y-mesh 
pressure 
index; = 1, 2 
acceleration parameter in nth ADI solution at position !Pij 
index; = 1,2 
time 
nth pseudotime interval 
temperature 
velocity in the x-direction 
velocity in the y-direction 
coordinate variable in horizontal direction, positive eastward 
scaling length in s-direction 
coordinate variable in the vertical direction, positive downward 
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Symbols 

W-4 
vx 
VY 
6% 

S, 

Dejinition 

first order in h 
finite difference derivatives in x-direction 
finite difference derivatives in y-direction 
second-order finite-difference derivative including advection in 
the x-direction 
second-order finite-difference derivative including advection in 
the y-direction 

Notes. (1) A subscript of 0 (as in pO) denotes a reference quantity or a dimen- 
sional scaling parameter. (2) The summation convention is to be used only on 
index q. 
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